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The fragment molecular orbital method (FMO) has been used with a large number of wave functions for
single-point calculations, and its high accuracy in comparison to ab initio methods has been well established.
We have developed the analytic derivative of the electrostatic interaction between far separated fragments
and performed a number of restricted Hartree-Fock (RHF) geometry optimizations using FMO and ab initio
methods. In particular, theR-helix, â-turn, and extended conformers of a 10-residue polyalanine were studied
and the good FMO accuracy was established (the rms deviations for the former two forms were about 0.2 Å
and for the latter structure about 0.001 Å). Met-enkephalin dimer was used as a model for the polypeptide
binding and computed at the 3-21G and 6-31G* levels with a similar accuracy achieved; the error in the
binding energy predictions (FMO vs ab initio) was 1-3 kcal/mol. Chignolin (PDB: 1uao) and an agonist
polypeptide of the erythropoietin receptor protein (emp1) were optimized at the 3-21(+)G level, with the rms
deviation from ab initio of about 0.2 Å, or 0.5° in terms of bond angles. The effect of solvation on the
structure optimization was studied in chignolin and the Trp-cage miniprotein construct (PDB:1l2y), by
describing water with TIP3P. The computed structures in gas phase and solution are compared to each other
and experiment.

1. Introduction

The quantum-chemical methods have demonstrated their high
accuracy and generality in describing molecular systems from
the first principles. However, the traditional approaches require
computational resources that scale very steeply with the system
size. Consequently, the applications of ab initio methods, even
to single-point calculations of systems of biological size, are
scarce. The calculations of cytochrome C and insulin were
reported using PROTEINDF.1,2 Geometry optimizations pose
a far greater challenge, as they typically require hundreds of
single-point calculations to optimize flexible biological systems
such as proteins. Among the first applications, Alsenoy et al.3

optimized a small protein with restricted Hartree-Fock (RHF)
and the 4-21G basis set. More progress has been achieved in
treating large systems with semiempirical methods,4-6 the
ONIOM scheme,7,8 the quantum mechanics/molecular mechan-
ics (QM/MM) approach,9,10and the effective fragment potential
theory.11 The incremental correlation method has been successful
in treating the electron correlation in the periodic systems such
as crystals and polymers.12,13

Fragment-based methods are a fast-developing field of
research14 whereby the system is divided into pieces commonly
called fragments and the total properties are obtained from those
of fragments and their conglomerates. To name just a few, the
molecular tailoring approach,15,16 the molecular fractionation
with conjugate caps,17,18 and the elongation approach19,20 use
different strategies in describing the effect of the environment
upon the electronic structure of fragments; several FMO-like
energy expansions have also been suggested.21,22However, the
ability to perform geometry optimizations remains rather
limited.23,24

The fragment molecular orbital (FMO) method originally
proposed by Kitaura et al.25 has been shown26 to closely
reproduce ab initio properties, including the energy, energy
gradient, and dipole moment. The original RHF implementation
has been generalized into a variety of common wave function
types: density functional theory,27 second-order Møller-Plesset
perturbation theory,28 multiconfiguration self-consistent field,29

and coupled cluster,30 all of which can be combined into a
multilayer scheme.31 Nearly analytic RHF gradients have been
developed by Kitaura et al.32

The polarizable continuum model has been interfaced with
the FMO method,33 providing means for treating solvent effects.
The efficiency in handling large molecules has been demon-
strated in the all-electron FMO study of a system with more
than 20 000 atoms.34 The recently proposed pair interaction
energy decomposition analysis (PIEDA)35 demonstrated the high
importance of the dispersion interaction in polypeptides and
water clusters. The usefulness of the FMO method for treating
large systems has been exemplified in a number of applications
to biological systems.36-41

The organization of this paper is as follows. After a brief
FMO introduction, an important improvement in the computa-
tion of the FMO gradient is described. For the purpose of
comparing the FMO and ab initio optimizations, we use RHF
wave function throughout. Next, a careful analysis of the
accuracy in reproducing the optimized geometries for polypep-
tides and small proteins was conducted in comparison to the
ab initio structures. In particular, we studied theR-helix (denoted
by R-ala10),â-turn (â-ala10), and extended (e-ala10) conformers
of 10-residue polyalanine using the 3-21G and 6-31G* basis
sets. The basis set effects upon geometry, as well as the accuracy
in reproducing the relative energetics, are discussed. Dimer of
met-enkephalin was used as a model of the polypeptide* Corresponding author. E-mail: d.g.fedorov@aist.go.jp.
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interaction, and the 3-21(+)G and 6-31(+)G* geometry opti-
mization results are discussed ((+) denotes that diffuse functions
were added to all carboxyl groups). Chignolin (PDB: 1uao)
and an agonist polypeptide of erythropoietin receptor protein
(emp1) were optimized at the 3-21(+)G level.

Finally, we considered the importance of the solvent effects
upon geometry by performing geometry optimizations of
chignolin and Trp-cage miniprotein construct (PDB: 1l2y) in
gas phase as well as in the first solvation shell, modeled by
molecular mechanics combined with FMO.42 The solvated
structures were compared to experiment and a reasonable
agreement was achieved.

2. Methodology

2.1. Theory.In the two-body expansion of the FMO method
that we use for geometry optimizations, the total energyE is
given by:

where the monomer (EI) and dimer (EIJ) energies are obtained
from the corresponding calculations ofN fragments (monomers)
and their pairs (dimers) in the external Coulomb field due to
the remaining monomers. The rigorous Coulomb field (including
contributions from both nuclei and electron density) allows
proper description of the density distribution in large systems,
eliminating the need to cap dangling bonds found in almost all
other fragment-based methods.

The FMO calculation begins by making an initial guess of
the electron density for each fragment and converging the
monomer densities in the external Coulomb field added to the
Fock matrix for each fragment. The monomer calculations
change the total Coulomb field and they are repeated self-
consistently. Consequently, all pairs of fragments are computed,
close pairs as RHF in the external Coulomb field and remote
ones as the electrostatic (ES) interaction between nuclei and
electron densities in the two fragments (the ES approximation).
The original gradient work by Kitaura et al.32 did not introduce
the derivative of the latter dimer energy type, so it was
implemented in this work. Note that the number of dimers for
which SCF is performed is in general linear14 (proportional to
the number of fragments) and all other dimers are computed in
the ES approximation (their number being quadratic). Develop-
ment of the gradient for the latter terms leads to a very
significant reduction of the computational cost.

Equation 1 can be rewritten as follows,

whereE′I and E′IJ are the internal energies of monomers and
dimers, respectively (with the electrostatic energy subtracted

from the total energy).∆DIJ is the density matrix difference14

of dimer IJ and the sum of monomerI andJ electron densities.
VIJ is the electrostatic field due to the external fragments acting
upon dimer IJ. For those dimers, where the interfragment
distance is large, the third term in eq 2 vanishes and the second
term can be approximated by the ES interaction43 between
fragmentsI andJ.

The contribution of dimerIJ to the total energy is given in
the ES approximation by:

where uK(L)are the one-electron (nucleus-electron) Coulomb
potentials exerted by fragmentL unto fragmentK; DI is the
electron density for monomerI; MI andMJ are the number of
basis functions in fragmentsI andJ, respectively. The nuclear
repulsion contribution is given by:

where R and â number atoms with nuclear chargesZR and
coordinatesRR.

The ES approximation is used if the distanceRIJ between
fragments I and J is larger than the thresholdRES. It is
computationally efficient to combine all ES dimer derivatives
into one sum, thus one obtains from summing all similar
contributions given in eq 3,

By taking the analytic derivative of eq 4 with respect to some
nuclear coordinatea of atom R, one obtains (derivatives are
denoted by superscripta) the combined contribution to the total
energy gradient due to all ES dimers∆EES

a :

TABLE 1: Charges Q and the Number of ResiduesNR,
Atoms NA, and Basis FunctionsNBF for All Systems

molecule Q NR NA NBF

MeCO-(Ala)10-NHMe 0 10 112 609a, 939c

Met-enkephalin
monomer 0 5 75 446b, 686d

dimer 0 10 150 892b, 1372d

chignolin (1uao) -2 10 138 851b
emp1 (1ebp) 2 16 254 1445b

1l2y 1 20 304 1686a

a 3-21G.b 3-21(+)G. c 6-31G*. d 6-31(+)G*.
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In the last sum,b stands for the (x,y,z) coordinate of atomâ
corresponding to (x,y,z) of a in R. The three gradient contribu-
tions ∆EINT

a , ∆EMO
a , and ∆ENR

a are the integral, molecular
orbital coefficient, and nuclear repulsion derivative terms,
respectively.

∆EES
a in eq 5 gives the gradient correction due to far separated

dimersRIJ > RES. It is added to the dimer gradients for which
SCF is performed (RIJ eRES), yielding the energy gradient∇E
for the whole system.WI in eq 5 is the electrostatic potential
energy weighted density matrix defined in eq 6.

2.2. Computational Details.Geometry optimizations were
performed using the default geometry optimizer in GAMESS44

based on the numeric updates of the Hessian, which are
accumulated from∇E, producing a new geometry at each
optimization step. All degrees of freedom were optimized and
the calculations were performed on several PC clusters.

The following systems were studied with the two-body
FMO2-RHF method and ab initio RHF: theR-helix, â-turn,
and the extended conformers of polyalanine, with the 3-21G
and 6-31G* basis sets. Both monomer and dimer of met-
enkephalin were treated with 3-21(+)G and 6-31(+)G*; chi-
gnolin (PDB: 1uao) and an agonist polypeptide of erythropoietin
receptor protein (emp1) were computed at the 3-21(+)G level.
The sizes of all systems are summarized in Table 1.

Chignolin and Trp-cage miniprotein construct (PDB: 1l2y)
were optimized in gas phase as well as in the first solvation
shell using 3-21(+)G for 1uao and 3-21G for 1l2y. In the case
of the solvated calculations, the proteins were treated with
FMO2-RHF and water was described by molecular mechanics
(MM). The combination of FMO and MM was implemented
in the IMOMM fashion45 with the Tinker46 program linked to
GAMESS. In MM calculations, the protein and water were
described by the Amber9447 and TIP3P,48 respectively.

Specifically, the FMO/MM calculations proceeded as follows.
The FMO gradient computation of the polypeptide systems
(chignolin and 1l2y) were performed in gas phase as usual,
followed by the MM calculation of the solvated system whereby
the total gradient was complemented by the polypeptide-solvent

Figure 1. Model geometries of the capped alanine conformers: (a) extended, (b)R-helix, and (c)â-turn. Ri andâi designate the proton acceptor
atoms of hydrogen bonds in theR-helix andâ-turn conformers, respectively.

TABLE 2: RMSD between FMO and ab initio Optimized Geometrical Parameters of MeCO-(Ala)10-NHMe

basis set conformer all (Å)a bond length (Å)b bond angle (deg)c φ (deg)d ψ (deg)e ω (deg)f

3-21G extended 0.0003 0.0004 0.035 0.04 0.03 0.02
R-helix 0.113 0.0020 0.297 2.35 2.83 1.07
â-turn 0.173 0.0017 0.431 3.03 2.79 1.25

6-31G* extended 0.0015 0.0006 0.051 0.10 0.05 0.07
R-helix 0.198 0.0019 0.272 2.80 4.12 1.40
â-turn 0.203 0.0037 0.331 2.68 3.12 1.11

a All Cartesian coordinates, including hydrogen atoms.b All covalent bond lengths are included.c All covalent bond angles are included.d Dihedral
angle of C′(i - 1)-N(i)-CR(i)-C′(i) (i numbers residues).e Dihedral angle of N(i)-CR(i)-C′(i)-N(i + 1). f Dihedral angle of CR(i)-C′(i)-N(i
+ 1)-CR(i + 1).

TABLE 3: Comparison of the Optimized Geometric Parameters for the One- (m ) 1) and Two-Residue (m ) 2) Fragmentation
(3-21G) of MeCO-(Ala)10-NHMe

conformer m all (Å)a bond length (Å) bond angle (deg) φ (deg) ψ (deg) ω (deg)

extended 1 0.123 0.0015 0.35 1.24 0.83 0.63
2 0.000 0.0004 0.035 0.037 0.034 0.017

R-helix 1 0.325 0.0032 0.51 6.23 7.78 2.21
2 0.113 0.0020 0.30 2.35 2.83 1.07

â-turn 1 0.311 0.0031 0.43 4.75 3.03 1.59
2 0.173 0.0017 0.43 3.03 2.79 1.25

a See Table 2 for the definition of all quantities.
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and solvent-solvent contributions obtained from molecular
mechanics. The combined gradient was used in geometry
optimization, producing a new set of coordinates for the
polypeptide part, used iteratively to repeat the above steps until
convergence. No link atoms were used as there was no covalent
bond on the boundary of FMO and MM. The only difference
between the regular IMOMM and FMO/MM calculations was

the computation of the gradient for the quantum region
(polypeptide).

Fragmentation of polypeptides was performed at CR atoms.
Typically, we assigned two residues per fragment, except 1l2y,
where one residue per fragment division was done (only small
Gly residues were appended to their neighbors). In addition,
we also probed the magnitude of the fragmentation effects by
comparing the one and two residue per fragment division for
polyalanines. All FMO input files including the automatic
fragmentation were generated with FMOutil.49

In all calculations, spherical atomic basis functions were used
(5d). The geometry optimization convergence threshold was 1
× 10-4 hartree/bohr, which means that the maximum gradient
component with respect to a single coordinate should fall below
1 × 10-4 and the rms gradient should be smaller than1/3 ×
10-4. In the IMOMM calculations, the optimization threshold
was 5× 10-4 hartree/bohr and 0.01 kcal/mol‚Å-1, for molecular
orbital and MM calculations, respectively.

We used the following approximations43 in the FMO poly-
alanine calculations: RESPAP) 1.0 (the Mulliken atomic
populations were used to reduce the cost of the two-electron
contributions in the external electrostatic potentials, if the
interfragment separation exceeded this value), RESPPC) 2.0
(the Mulliken charges were used instead of the two-electron
contributions in the external electrostatic potentials if the
interfragment separation exceeded this value), and RESDIM)
2.0 (the ES approximation described above to approximate the
total energy of far separated dimers); in all other systems, to
improve the accuracy, we did not use the RESPAP approxima-
tion.

The initial polyalanine structures (MeCO-(Ala)10-NHMe)
were prepared with Hyperchem, met-enkephalin dimer was
taken from the Cambridge Crystallographic Data (ID: FABJIB),
and all other systems were taken from PDB (experimental
geometries). For 1uao and 1l2y, the PDB data came from NMR
containing many structures, and we used model 1. For emp1,
an X-ray structure was available (PDB: 1ebp), which was
protonated assuming the standard ionized state using Hyper-
chem.

To model the first solvation shell, water was added with
Hyperchem as a periodic box, and the water molecules within
8 Å from the protein were extracted. Consequently, the protein
structure was frozen and the position of the water molecules
optimized. From this, we took all water molecules within 5 Å
from the protein surface. Thus constructed first solvation shells
consisted of 177 and 293 water molecules for 1uao and 1l2y,
respectively.

The parallelization of the ES dimer derivatives was ac-
complished with the generalized distributed data interface
(GDDI)50 based on the same work load distribution as used for
the ES dimer energy. The additional cost of computing the ES
dimer gradients is negligible compared to other much more time-
consuming parts of an FMO calculation (that is, SCF of
monomers and dimers, including the computation of their
external electrostatic potential). As an example, the energy
gradient for the 10-residue polyalanine with the 6-31G* basis
set took 6.8% more than the corresponding energy calculation.

3. Results and Discussion

3.1. Polyalanine.The structures of polyalanine conformers
are visualized in Figure 1. In Table 2, we summarized the
reduced mean-square deviations (rmsd) between the FMO and
ab initio Cartesian coordinates, bond lengths, bond angles, and
polypeptide dihedral anglesφ, ψ, andω for the three conformers

Figure 2. Deviations of dihedral angles (∆φ, ∆ψ, and∆ω) of FMO
optimized geometries with the 6-31G* and 3-21G basis sets relative to
the corresponding ab initio values: (a)R-helix and (b)â-turn. The
horizontal axis indicates the serial number of alanine residues.

TABLE 4: Comparison of N(H) ‚‚‚O Hydrogen Bond
Lengths (Å) between the FMO and ab initio Optimized
Geometries in ther-Helix and â-Turn of
MeCO-(Ala)10-NHMe

3-21G 6-31G*

hydrogen bonda FMO ab initio FMO ab initio

R1 3.137 2.987 3.181 3.186
R2 2.987 2.979 3.364 3.242
R3 3.026 3.015 3.218 3.248
R4 3.002 2.994 3.277 3.221
R5 2.982 2.961 3.403b 3.524b

R6 3.015 3.109 4.370b 4.421b

R7 3.178 3.200 3.343 3.330
R8 3.036 3.048 3.319 3.239
R9 3.064 3.064 3.190 3.255
â1 2.895 2.910 3.037 3.061
â3 2.974 2.957 3.157 3.141
â5 3.293 3.287 3.757b 3.745b

â8 2.802 2.816 3.038 3.013
â10 2.939 2.927 3.167 3.099

a See Figure 1.b The N‚‚‚O interatomic distance is too long for a
hydrogen bond, but it is given for the comparison of the two basis
sets.
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of polyalanine: theR-helix, â-turn, and extended form. In
computing the rmsd values, we aligned the two structures under
comparison minimizing the mean-square deviation. The details
of the deviations between FMO and ab initio structural
parameters are also plotted in Figure 2. It can be seen (Table
2) that, for the latter conformer, the errors are nearly zero. Thus,
the fragmentation scheme in FMO by itself (the fact that
covalent bonds are divided) does not introduce much error
and the FMO structures nearly perfectly coincide with ab
initio ones. The other two conformers have the errors about 1
order of magnitude larger. The origin of the FMO error in
general was elucidated earlier,51 and it is mainly the three-body
coupling between pairs of hydrogen bonds that is responsible
for it.

One can observe that the overall agreement between FMO
and ab initio is good: in terms of the rmsd values, at worst
about 0.1-0.2 Å total, for bond lengths 0.001-0.004 Å, and
for bond angles 0.1-0.4°. Rotations along the polypeptide
angles (φ, ψ) correspond to very small energy differences with

about 1 kcal/mol rotational barriers, and the observed error of
1°-4° is not relevant in practice, as the thermal energy at room
temperature brings enough energy to allow nearly free rotation
about these angles.52 Also, the error for these two angles is
concerted in the sense that the whole structure is slightly
distorted relative to ab initio in a coherent fashion, which can
be seen from the small rmsd values. The other dihedral angle
ω, which is more rigid and corresponds to the preferential
orientation of polypeptides as thetransconformations, had the
error of about 1°-1.5°.

The relative stability of the polypeptide conformers and
proteins is largely driven by the fairly weak noncovalent
interactions, most importantly, by the hydrogen bond network.
The hydrogen bond distances for theR-helix and â-turn are
listed in Table 4. In FMO, pair interactions (corresponding to
hydrogen bonds) are described by dimer calculations at the ab
initio level, and the error mostly comes from the three-body
and higher-order coupling of interactions involving charge
transfer. In a network of hydrogen bonds, the interactions are

Figure 3. Superposition of one residue/fragment partition FMO (colored by chemical elements as gray (H), green (C), blue (N), and red (O)) and
ab initio (violet) optimized geometries (both at the RHF/3-21G level): (a) extended, (b)R-helix, and (c)â-turn. The rmsd is calculated from the
Cartesian coordinates of all atoms (including hydrogens). For theR-helix, the superposition of structures is done with the best fit excluding NHMe
and the three neighbor C-terminus residues to show that the overall deviation is largely local to these fragments.

TABLE 5: FMO and the ab initio Total Energies (au) of MeCO-(Ala) 10-NHMe at the Corresponding Optimized Geometriesa

basis set conformer FMO2 FMO3 ab initio

3-21G extended -2690.509496 -2690.509539 -2690.509541
R-helix -2690.571221 (-38.7) -2690.564465 (-34.5) -2690.566724 (-35.9)
â-turn -2690.550923 (-26.0) -2690.555551 (-28.9) -2690.557882 (-30.3)

6-31G* extended -2705.537661 -2705.537736 -2705.537745
R-helix -2705.561143 (-14.7) -2705.558627 (-13.1) -2705.560242 (-14.1)
â-turn -2705.556104 (-11.6) -2705.557719 (-12.5) -2705.559355 (-13.6)

a The energy relative to the extended conformer is given in parentheses in kcal/mol.
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complicated and no pronounced trend in the hydrogen bond
length could be observed (Table 4). In particular, both over-
and underestimation of the bond lengths are seen. One can also
comment that the energy surface with respect to a small
noncovalent bond length variation (about 0.1 Å) is flat and the
total energy is not sensitive to such changes. The overall
discrepancy between FMO and ab initio is small, and the
individual hydrogen bond differences are not random but reflect
some small coherent change of the whole network.

In Table 5, we listed the relative stabilities of conformers, as
obtained from FMO and ab initio calculations using their
optimized structures. The errors in the relative stabilities do not
exceed 3.7 and 2.0 kcal/mol for the 3-21G and 6-31G* basis

sets, respectively. The larger error of the former basis can be
expected, as it was also observed in the previous accuracy
study.26 By using the FMO2 optimized structures and performing
single-point three-body FMO3 calculations,26 the errors are
decreased to 1.5 and 1.0 kcal/mol for the 3-21G and 6-31G*
basis sets, respectively. Thus, a reasonable compromise between
the accuracy and computational efficiency is in using FMO2
for geometry optimizations and refining the final energetics by
FMO3.

3.2. Fragmentation Effects.It is known that doubling the
fragment size increases the FMO accuracy (the error in the total
energy relative to ab initio is typically halved).14 To investigate
the effect of the fragment size upon the geometry optimizations,
we compared the 3-21G structures of polyalanines, optimized
for the one and two residue per fragment division, denoted by
FMO2/1 and FMO2/2, respectively. The superimposed struc-
tures for FMO2/1 and ab initio are shown in Figure 3. In the
discussion below, the two residue per fragment data (FMO2/2)
from Table 2 were complemented by the corresponding set of
FMO2/1 data and tabulated in Table 3.

For the extended conformer, the rms deviations for the
FMO2/1 and FMO2/2 structures relative to ab initio are 0.123
and 0.000 Å, respectively. It is known from the earlier accuracy
tests that extended conformers are described by FMO2/2 nearly
exactly,26 whereas the error for FMO2/1 is fairly large. The rmsd
values for the covalent bonds and angles are 0.0015 Å and 0.35°
for FMO2/1, whereas for FMO2/2 they are 0.0004 Å and 0.035°,
respectively. The dihedral angleφ, ψ, andω deviations are 1.24,
0.83, and 0.63 (deg) for FMO2/1, which can be compared to
the corresponding FMO2/2 values of 0.037, 0.034, and 0.017
(deg). While a drastic improvement can be achieved by doubling
the fragment size, the structure accuracy of FMO2/1 is good,
which can be seen from the fact that the ab initio RHF energy
computed at the FMO2/1 and RHF optimized geometries differs
only by 0.8 kcal/mol.

In the R-helix, the overall rmsd values are 0.325 and 0.113
(Å) for FMO2/1 and FMO2/2, respectively. For FMO2/1, the
rmsd of the covalent bonds and angles are 0.0032 Å and 0.51°,
which is about 50% more than in FMO2/2 (0.0020 Å and 0.30°).
The 3-fold difference in the rmsd values comes from the dihedral
anglesφ, ψ, andω, whose deviations are 6.23, 7.78, and 2.21
(deg) for FMO2/1, and 2.35, 2.83, and 1.07 (deg) for FMO2/2.
The main factor that is responsible for the larger error of
FMO2/1 is the C-terminus and three adjacent residues. The
FMO2/1 deviations of the residue-specific angles (φ, ψ, ω)
are: Ala8 (3.73,-10.57, 4.47), Ala9 (4.42,-11.08, 3.89), and
Ala10 (14.54,-13.52, 1.35), all in degrees. If one excludes
these fragments and calculates the rmsd for all remaining atoms,
the value of 0.102 Å is obtained, which is essentially the same
as in FMO2/2. Therefore, the FMO2/1 and FMO2/2 structures
of the R-helix are essentially the same, with the exception of
the C-terminus, the reason for the latter deviation being the flat
energy surface, as the terminus is not as tightly bound by
hydrogen bonds as the rest of the helix. We conclude that the
accuracy of the FMO2/1 optimization is reasonably good. In
proteins, the termini of mostR-helices are not free, so that the
problem is expected to be insignificant. The difference of the
ab initio RHF energy computed at the FMO2/1 and RHF
optimized structures was 3.4 kcal/mol.

For theâ-turn, the overall rmsd values are 0.311 and 0.173
(Å) for FMO2/1 and FMO2/2, respectively. The rmsd of the
covalent bonds and angles are 0.0031 Å and 0.43° in FMO2/1,
which can be compared to FMO2/2 (0.0017 Å and 0.43°). The
rmsd of the dihedral angles (φ, ψ, ω) are (4.75, 3.03, 1.59) and

Figure 4. Superposition of the FMO (colored by chemical elements
as gray (H), green (C), blue (N), and red (O)) and ab initio (all violet)
optimized geometries of (a) Met-enkephalin dimer, (b) emp1, (c) 1uao,
and (d) 1l2y. The 3-21(+)G basis set is used for (a-c), and 3-21G is
used for (d). Dotted lines show hydrogen bonds.
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(3.03, 2.79, 1.25) for FMO2/1 and FMO2/2, respectively (all
in degrees). They are very similar, except forφ, which has a
somewhat larger deviation for FMO2/1. The source of this is
the pair of residues at the turning point (Ala4 and Ala6), for
which the deviation of FMO2/1 is-8.5 and 10.2 (deg),
respectively. With these two residues excluded, the rmsd ofφ

in FMO2/1 becomes 2.5°, which is similar to FMO2/2. Thus,
we observe that theâ-turn structures are nearly the same for
FMO2/1 and FMO2/2, with the exception of the somewhat
larger error inφ for the former, local to the turning point. The
difference of the ab initio RHF energy computed at the FMO2/1
and RHF optimized structures was 2.2 kcal/mol. Summarizing,
we conclude that the one residue per fragment division is
reasonable for geometry optimizations and the accuracy can be
systematically improved by doubling the fragment size.

3.3. Polypeptide Interaction in Met-enkephalin Dimer.
Met-enkephalin dimer consists of two monomers bound head-
to-tail to each other. Geometry optimizations of this originally
zwitterion dimer in gas phase for both ab initio and FMO
resulted in a proton transfer from the N-terminus (Thy1) to the
C-terminus (Met5). Therefore, we optimized monomer and
dimer as neutral species at both termini.

The summary of the FMO and ab initio structure deviations
is provided in Table 6, and the superposition of the two
structures is given in Figure 4a. The initial structure of met-
enkephalin monomer was taken from the dimer geometry, and
its optimization yielded the extended form. As can be seen, all
rmsd values (total, bond length, bond angle, and polypeptide
angles) for the extended form of met-enkephalin monomer are
very similar to those of e-ala10. The corresponding deviations
in the case of 6-31G* are larger, which is due to the flatter
potential energy surface corresponding to the polypeptide
dihedral angle rotation. Note that the gradient accuracy26 of

FMO vs ab initio is quite similar for the two basis sets, with
6-31G* having about 20-30% larger error, so the difference
observed here does not come from the gradient deviation alone.
The very small energy difference of 0.16 kcal/mol between the
FMO and ab initio total energies also supports this assertion.

The two antiparallel monomer chains form dimer with the
resultant structure of aâ-sheet (Figure 4a). The deviations of
the dimer structural parameters (Table 6) are very similar to
those observed inâ-ala10 (slightly larger). In contrast to
monomer, dimer has a fairly rigid structure not featuring a flat
energy surface along many angle rotations, thus the basis set
dependence of the error is small. The polypeptide angle
deviation of several degrees is similar to polyalanine and does
not present a problem, as the overall structure shows good
accuracy: the total rmsd of 0.167 and 0.195 Å, for 3-21(+)G
and 6-31(+)G*, respectively. Overall, we conclude that the
FMO optimization results are in a good agreement with ab initio.

An accurate evaluation of the binding energies requires both
accurate structures and reliable energy calculations. Next, we
demonstrate that FMO possesses sufficient accuracy in this
regard. The total and binding energies obtained with ab initio
and FMO-based RHF are summarized in Table 7, where the
energies are obtained at the geometries optimized with each
method (the three-body FMO predictions (FMO3) are obtained
with the FMO2 structures). It can be seen that the small error
in the binding energies comes from the small inaccuracy in the
total energy of dimer; the deviation of the FMO2 binding
energies from ab initio is-2.9 and -1.0 (kcal/mol) for
3-21(+)G and 6-31(+)G*, respectively. It may be noted that
the general trend of the 3-21G basis set to have a somewhat
larger error compared to 6-31G* was observed earlier as well;26

nevertheless, the basis set dependence of the binding energy
error is small.

The higher-level FMO calculations (FMO3) for the two basis
sets reduced the errors in the binding energy from 2.9 to 1.5
kcal/mol (in the worst case). Because this change is small, we
conclude that FMO2 can reliably predict the binding energies
(that is, it can reproduce the corresponding ab initio values).
The basis set dependence of the binding energies is very large
in this system; the ab initio values are-68.3 and-27.2 (kcal/
mol) for 3-21(+)G and 6-31(+)G*, respectively. The former
basis set largely overestimates the binding energies and the use

TABLE 6: RMSD between FMO and ab initio Optimized Geometrical Parameters of Polypeptides

molecule basis set heavy (Å)a backbone (Å)b bond length (Å)c bond angle (deg)d φ (deg) ψ (deg) ω (deg)

enk-mone 3-21(+)G 0.001 0.001 0.0012 0.05 0.03 0.06 0.03
enk-mon 6-31(+)G* 0.161 0.104 0.0081 0.19 3.36 1.91 1.46
enk-dimf 3-21(+)G 0.167 0.080 0.0014 0.26 2.24 1.20 1.28
enk-dim 6-31(+)G* 0.195 0.075 0.0105 0.07 3.84 4.16 2.88
1uao 3-21(+)G 0.097 0.041 0.0022 0.24 0.63 0.84 1.16
emp1 3-21(+)G 0.095 0.073 0.0019 0.35 1.73 2.32 1.24
1l2y 3-21G 0.198 0.157 0.0048 0.60 6.63 4.43 1.43

a Cartesian coordinates of all heavy atoms.b Cartesian coordinates of all backbone atoms.c All covalent bond lengths.d All covalent bond angles.
e Met-enkephalin monomer.f Met-enkephalin dimer.

TABLE 7: FMO and ab initio Total ( E, au) and Binding Energies (∆E, kcal/mol) of Met-enkephalin Dimer

basis set FMO2a FMO3a ab initio

E (monomer) 3-21(+)G -2224.573695 (0.00) -2224.573694 (0.00) -2224.573691
E (dimer) 3-21(+)G -4449.260742 (-2.89) -4449.253738 (1.51) -4449.256144
∆Eb 3-21(+)G -71.13 (-2.89) -66.74 (1.51) -68.25
E (monomer) 6-31(+)G* -2236.720017 (0.16) -2236.720014 (0.16) -2236.720267
E (dimer) 6-31(+)G* -4473.485026 (-0.68) -4473.482129 (1.14) -4473.483950
∆Eb 6-31(+)G* -28.23 (-0.99) -26.42(0.82) -27.24

a The deviation of FMO from the corresponding ab initio values is given in parentheses in kcal/mol. FMOn denotes then-body FMO expansion.
b ∆E ) E (dimer) - 2E (monomer)

TABLE 8: Comparison between the FMO and ab initio
Total Energies (au) at Their Respective Geometries

molecule FMO2a ab initio

1uao -3779.029339 (-0.49) -3779.028553
emp1 -6875.929363 (-0.01) -6875.929349
1l2y -7398.823548 (1.48) -7398.825906

a The difference (FMO- ab initio) is given in parentheses in kcal/
mol. All FMO energies are for a two residue per fragment division;
the energy of 1l2y with one residue per fragment is-7398.835068.
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of an at least double-ú with polarization basis set (6-31G*)
seems necessary in practical applications.

3.4. Other Polypeptide Structures. Here we used the
3-21(+)G basis set with the diffuse functions added to the
carboxyl groups (COO-), except for 1l2y, in which case, SCF
convergence problems prevented such addition and we thus used
3-21G. It should be noted that frequently the lack of diffuse
functions on carboxyl groups leads to the unphysical elongation
of the adjacent C-C bonds (up to 1.6 Å, in our experience).
However, if carboxyl groups are bound to other groups with
salt bridges or hydrogen bonds, such a problem does not occur.
In 1l2y, there are two carboxyl groups in Ser20 (C-terminus)
and Asp9. During geometry optimizations, salt bridges were
formed between the former group and the amino group in the
N-terminus as well as between the latter group and Lys8. As a
result, the C-C bond lengths in the two carboxyl groups were
1.524 and 1.512 Å (ab initio) or 1.543 and 1.517 Å (FMO).
Thus we observe that the absence of diffuse functions in 1l2y
did not lead to problems in this regard.

In 1uao (Figure 4), for both ab initio and FMO, a salt bridge
was formed between the protonated amino group (NH3

+) of the
N-terminus (the cap of Gly1) and the carboxyl group of the
C-ternimus (the cap of Gly10). Consequently, the gas-phase
optimization resulted in a proton transfer between the two
residues, which happens frequently in such cases. A similar
problem was described above for met-enkephalin dimer (proton
transfer between two monomers). In our experience, proton

transfer occurs when a pair of COO- and NH3
+ groups is able

to arrange itself so that NH‚‚‚O forms a nearly straight line. If,
due to some steric hindrance this is not possible, then proton
transfer does not occur. In this system (1uao), there was no such
hindrance and a proton transfer took place. The other two
carboxyl groups in Asp3 and Glu5 had no partner to form salt
bridges, and no proton transfer occurred. It should be pointed
out that the main goal of comparing the FMO and ab initio
structures can be successfully achieved here, as this proton
transfer took place in both cases. As related below, no proton
transfer occurred in the solvated model.

As can be seen in Figure 4b, emp1 has a structure of aâ-turn,
with Thr1 (N-terminus) and Gln16 (C-terminus) being close to
each other. However, the amino group of the former does not
form a salt bridge with the carboxyl group of the latter, and
instead, the two residues are bound by a hydrogen bond between
the amino group of Thr1 and Oε1 of Gln16. l12y includes two
salt bridges between Asn1 (N-terminus) and Ser20 (C-terminus),
as well as between Lys8 and Asp9. However, in cases of both
emp1 and 1l2y, due to the structural hindrance, NH‚‚‚O cannot
be arranged linearly, and no proton-transfer takes place.

The comparison of the FMO and ab initio structural param-
eters is given in Table 6 as well as in Figure 4a-d. The rmsd
of the covalent bond lengths in FMO and ab initio is 0.0022,
0.0019, and 0.0048 (Å), for 1uao, emp1, and 1l2y, respectively.
The corresponding rmsd of the bond angles is 0.24, 0.35, and
0.60 (deg). The difference between the FMO and ab initio values

Figure 5. Hydrated polypeptide models of (a) 1uao and (b) 1l2y. The superposition of heavy atoms in the FMO optimized geometries in gas phase
(violet) and in the hydrated cluster (colored by chemical elements as green (C), blue (N), and red (O)) are shown for (c) 1uao and (d) 1l2y. The
rmsd values between the gas phase and solvated structures are obtained for the Cartesian coordinates of all heavy atoms.
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is thus small: several milliångstrom or fractions of a degree.
The dihedral angle rmsd (φ, ψ) is (0.63°,0.84°), (1.73°, 2.32°),
and (6.63°,4.43°) for 1uao, emp1, and 1l2y, respectively. As
pointed out above, this error of several degrees comes from the
several kcal/mol error in the FMO total energy, coupled with
the flat energy surface (with respect to the rotations about these
angles). The larger error in these angles does not appear to lead
to practical problems, and the overall all heavy atom rmsd values
show good accuracy: 0.097, 0.095, and 0.198 (Å), for 1uao,
emp1, and 1l2y, respectively.

Both 1uao and emp1 are distortedâ-turns so that the error
behavior resembles that forâ-ala10. As shown in Table 2, the
â-turn rmsd for all atoms is 0.173 Å, and for heavy atoms it is
0.125 Å. The structure of emp1 is only slightly distorted from
the idealâ-turn geometry, its rmsd value being very similar to
that of â-ala10. In contrast to emp1, the rmsd values for 1uao
(except forω) are smaller than those forâ-ala10. The reason
behind the larger distortion of 1uao from the idealâ-turn
geometry is thought to be the lack of the hydrogen bonds holding
the main chain together (Figure 4c). In the 20-residue protein
1l2y (Figure 4d), there are twoR-helices (from Asn1 to Asp9
and from Gly10 to Gly15), with a large relative helical fraction.
Thus, the rmsd values for 1l2y resemble those forR-ala10
(slightly larger).

It should be noted that 1l2y has twice as many residues and
nearly thrice as many atoms as ala10, and the overall rms
deviations from ab initio for 1l2y andR,â-ala10 are essentially
the same, despite the fact that 1l2y was computed with one
residue per fragment partition, whereas the polyalanines were
computed with two residues per fragment division. According
to our experience, this is a general trend of large protein structure
optimizations to be better described by FMO compared to small
test polypeptides. The reason for that is the native structure of
globular proteins, which is typically quite rigid and held together
by fairly strong hydrogen bonds, whereas the linear chains of
polypeptides considered here are very flexible.

The accuracy of the FMO total energies (relative to ab initio)
is summarized in Table 8. For 1uao, emp1, and 1l2y, the errors
are-0.49,-0.01, and 1.48 (kcal/mol) for the two-body FMO
method with two residues per fragment partition. The quality
of the absolute total energies is high, and one can reasonably
expect satisfactory performance with even better accuracy for
the energy differences.

3.5. Solvation Effects upon Structure.Generally, in gas
phase, the charged residues on the surface tend to form salt
bridges, and the structure optimization favors the formation of
intramolecular hydrogen bonds. In solution, both types of
bonding are to a large extent substituted by solute-solvent
interactions. The solvated structures of 1uao and 1l2y, including
the explicit solvent, are depicted in parts a and b of Figure 5,
respectively. This difference results in a distortion between gas
phase and solvated structures, including both main and side
chains. In addition, the gas-phase optimization often promotes
the proton transfer between basic and acidic residues.

The superimposed gas phase and solvated structures of 1uao
are shown in Figure 5c, and the dihedral angles (φ, ψ) are given
in Figure 6a. As discussed above, despite the fact that the N-
and C-termini were largely separated in the initial structure,
during the gas-phase geometry optimization, a salt bridge
between them was formed, followed by a proton transfer. In
contrast, in solution, water molecules enter between the two
termini and no salt bridge is formed. As a result, the gas phase
and solvated structures have a considerably different separation
between the two termini, and side chains adjust accordingly.

The observed large structural difference around Pro4 comes from
the fact that, in gas phase, the hydroxyl group in Tyr2 forms a
hydrogen bond with C′O of Gly7, whereas in solution, the
hydroxyl group of Tyr2 is stabilized by the interaction with
solvent and forms no such hydrogen bond. Instead, C′O of Pro4
has a stronger hydrogen bond with NH of Thr8, resulting in a
shorter separation between the two groups. This distortion
extends to the main chain area around Glu5 (see the distortion
of φ in Figure 6a).

The superimposed gas phase and solvated structures of 1l2y
are shown in Figure 5d, and the dihedral angles (φ, ψ) are given
in Figure 6b. As mentioned above, due to the structural
hindrance preventing the linear arrangement of NH‚‚‚O, a salt
bridge between the N- and C-termini is formed in gas phase
but does not lead to a proton transfer. In this solvated protein,
water molecules clustered around both termini prevent the salt
bridge formation. The structure distortion due to this difference
is blocked by the rigidR-helix near Leu2 at the N-terminus; at
the C-terminus, however, it spreads to Pro18, eliminating the
hydrogen bond between the indole NH of Trp6 and the main
chain C′O of Arg16. Both in the gas phase and solvated
structures, a salt bridge is formed between Asp9 and Lys8, and
the difference between the two in this aspect is small. The two
rigid R-helices form a large part of 1l2y and, with the exception
of the above-mentioned distortion due to the loss of the salt
bridge, the difference between the two structures is not large.

Summarizing, the difference between the gas phase and
solvated structures is in the formation of salt bridges and
hydrogen bonds, the distortion of their neighborhood and the
extent to which the latter is spread. The effect of the distortion
extension is considerable for random coil but is largely
blocked by the rigid conformations ofR-helices and strong
hydrogen bonds. One can expect a fairly small gas phase and
solvated structure difference for those proteins that have a rigid
structure, and this difference is limited mostly to the hydrogen
bond formation with the polar surface residues. It should be
noted that using a single configuration of explicit water
molecules is a reasonable approach to obtain the structure but
is not suited for calculations of solvation energies, in which

Figure 6. Dihedral angles (φ andψ) of (a) 1uao and (b) 1l2y in gas
phase (denoted as gas) and solvated (hyd) geometries. The horizontal
axis indicates the serial number of residues.
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case, either continuum models33 or configuration sampling
should be done.

In Figure 7a,b, the computed structures of 1uao and 1l2y are
superimposed with the experimental ones, which come from
NMR experiment and are typically constructed with force field
optimizations fitting the actually measured data. Thus, only
qualitative comparison is meaningful and one can observe from
the presented data that a good agreement is achieved. FMO can
be used instead of force fields in such experimental structure
construction.

The computed and experimental structures of emp1 are shown
in Figure 7c. The latter comes from a complex (PDB: 1ebp),
whereas the former is from the free gas-phase optimization.

Accordingly, the purpose of the comparison here is not to
discuss the computed and experimental structure difference, but
rather to point out the distortion due to the complex formation.
The latter effect is mostly expressed in the bent ladderlike
structure of theâ-turn.

4. Conclusion

To permit real protein optimizations, an important component
of the FMO energy gradient was developed (the energy
derivative of the electrostatic fragment pairs, forming the vast
fraction of all pair calculations). With the developed code, we
performed a number of geometry optimizations of the polypep-
tide and small protein structures. The accuracy in reproducing
ab initio structures was evaluated for several conformers of
polyalanine and other polypeptides. In addition, the basis set
dependence of the structure accuracy was investigated. The
effect of solvation upon minimum structures was elucidated in
detail.

In all cases, we conclude that the achieved accuracy is
sufficiently high to perform protein structure optimizations. To
obtain reliable predictions, the use of one residue per fragment
partition for FMO2 geometry optimizations can be compli-
mented by single-point FMO3 calculations refining the energet-
ics.

In general, some solvation model is needed to provide reliable
structure predictions, although in case of compact rigid proteins,
the gas-phase structures may be expected to be fairly reasonable.
The present scheme of explicit water described by TIP3P may
be difficult to apply to large proteins due to the large number
of degrees of freedom and, consequently, of the very significant
number of steps needed to find a minimum structure. In this
respect, continuum models such as PCM may be practically
favorable for geometry optimizations of proteins.
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